Статьи / Проектировщику

« Вернуться к списку статей

Методика расчета микроклимата в помещениях плавательных бассейнов

За последние годы значительно возросли темпы строительства и реконструкции частных коттеджей, домов элитной застройки, спортивных и оздоровительных центров с устройством в них закрытых плавательных бассейнов. К сожалению, предусматриваемые для помещений бассейнов инженерные решения по созданию в них требуемого температурно-влажностного режима зачастую не дают желаемых результатов.

Низкая эффективность предусматриваемых технических решений объясняется как экономией средств в процессе строительства, так и отсутствием методической литературы по расчету и проектированию систем обеспечения микроклимата (СОМ) в помещениях закрытых плавательных бассейнов различного назначения. Недостаточное внимание к вопросам обеспечения микроклимата при строительстве и реконструкции помещений бассейнов приводило к негативным последствиям в процессе их эксплуатации: активной конденсации влаги на ограждающих конструкциях, образованию грибковой плесени, коррозии металлических и гниению деревянных конструкций, несоблюдению санитарно-гигиенических условий по температуре, влажности и подвижности воздуха в зоне нахождения людей.
Следует отметить, что помещения закрытых плавательных бассейнов относятся к категории помещений с влажным режимом, имеющим свои отличительные особенности при формировании в них тепловых и влажностных потоков, определяющих выбор того или иного технического решения по обеспечению требуемых санитарно-гигиенических условий. Процесс формирования тепло-влажностного режима в таких помещениях представлен на схеме (рис. 1) и может быть описан следующей системой уравнений теплового и влажностного балансов:
Qогр.+Qисп.+Qосв.+Qл.+ Qот.+Qпр=Qуд,
Wисп.+Wл.+Wпр.=Wуд. (1)
 
 
 Рис. 1
 
Рассмотрим особенности каждой из составляющих, влияющих на формирование тепло-влажностного режима.
Интенсивность теплового потока через ограждающие конструкции (Qогр) является функцией температуры и влажности наружного и внутреннего воздуха, температуры на внутренней поверхности ограждающих конструкций и теплофизических характеристик соответствующего ограждения, то есть.
Qогр=f(tн, tв, Iн,φв,tог,Rог), (2)
где:
  • tн, Iн — расчетные зимние температура и теплосодержание наружного воздуха принимаются в соответствии со СНиП 23-01-99. с учетом тепловой инерции здания, табл. 5* СНиП 11-3-79**;
  • tв — расчетная температура внутреннего воздуха для помещений плавательных бассейнов принимается в соответствии со СНиП 2.08.02- 89* на 1–2°С выше температуры поверхности воды в бассейне. При этом температуру поверхности воды в бассейне необходимо поддерживать на уровне 26–28°С, а в лечебных бассейнах на 4–8°С выше. Таким образом, нормируемая температура воздуха в бассейнах — 27–30°С.
  • Rог — требуемое сопротивление теплопередаче, м2•°С/Вт, характеризующее степень тепловой защиты ограждающей конструкции, определяется по формуле:
Rо = n•(tв-tн)/(tв-tог)•Lв (3)
  • n — коэффициент, зависящий от ориентации ограждения относительно наружного воздуха, принимается по табл. 3 СниП 11-3-79**;
Для помещений плавательных бассейнов температурный перепад (tв - tог) является определяющим параметром, не допускающим выпадение конденсата и увлажнения материала конструкций, где температура внутренней поверхности ограждающих конструкций (tог) должна быть на 1–2°С выше температуры точки росы (tр) при нормируемых значениях температуры и относительной влажности внутреннего воздуха.
 
 
Рис. 2 (щелкните по изображению чтобы увеличить)
 
Нормируемая относительная влажность внутреннего воздуха (φв) в помещениях плавательных бассейнов принимается в соответствии со СниП 2.08.02-89* равной 50–65%, но конкретное ее значение в каждом отдельном случае диктуется степенью защиты ограждающих конструкций.
Исходя из рассчитанного значения требуемого сопротивления теплопередаче (Rо) определяется термическое сопротивление соответствующей ограждающей конструкции (Rк), по которому подбирается материал и толщина конструктивных слоев ограждения с учетом коэффициента теплопроводности материала соответствующего слоя (λ, Вт/м•°С):
b= Rк•λ= (Rо- 1/Lв- 1/Lн)•λ (4)
где Lв и Lн — соответственно коэффициенты теплообмена на внутренней и наружной поверхностях ограждений (Вт/м2•°С).
Принятые на основе расчета по холодному периоду года конструктивные решения должны быть проверены на условия теплоустойчивости в теплый период года с учетом допустимой амплитуды колебаний температуры внутренней поверхности ограждений в соответствии с разделом 3 СниП 11-3-79**.
 
 
Рис. 3
 
При устройстве входа в помещение бассейна со стороны наружного воздуха выбор конструкции входных дверей должен исключать инфильтрацию, при этом требуемое сопротивление теплопередаче наружных дверей (Rдв) должно быть не менее 0,6 Rо.ст.
 
 
Рис. 4
 
После окончательного выбора конструктивных решений ( или уточнения фактических значений сопротивлений теплопередаче строительных конструкций реконструируемых зданий) рассчитывается суммарное значение теплового потока, теряемого в холодный и поступающего в теплый периоды года через строительные ограждения:
Qог = 1/Rог•(tв- tн)•Fог, (5)
где Fог — площадь соответствующей ограждающей конструкции, м2.
Количество теплоты, поступающее в теплый период года с учетом теплопоступлений от солнечной радиации через светопрозрачные ограждения, зависит от их ориентации и теплофизических характеристик и рассчитывается по методике, изложенной в Справочнике проектировщика часть 11. Вентиляция и кондиционирование воздуха. Стройиздат 1978г.:
Qогл=(q’•F’ог+q’’•Fог’’)•Kотнп+(tн-tв)•Fог/Rог (5’)
где q’, q’’ — соответственно тепловые потоки через облученную и необлученную солнечной радиацией поверхности ограждающих конструкций, Котн.п — коэффициент относительного проникания солнечной радиации.
Количество теплоты (Qи, Вт), поступающее в помещение с испаряющимся потоком влаги (Wи), определяется из выражения:
Qи = 0,68•( Wи+Wл) (6)
где Wи — суммарное количество влаги (г/ч), испаряющейся с открытой водной поверхности зеркала бассейна и со смоченных поверхностей, прилегающих к водному зеркалу определится из выражения:
Wи= wотк•Fотк + wсм•Fсм, (7)
где wотк wсм — f(tв, fв, Рв Рнас,Vвп.,А) — интенсивность испарения влаги в условиях температурно-влажностного режима закрытых плавательных бассейнов в основном зависит от разницы парциальных давлений водяного пара при нормируемых значениях температуры и влажности внутреннего воздуха (Рв) и при полном его насыщении(Рнас) при температуре воды в бассейне (tw).
На интенсивность испарения влаги значительное влияние оказывает скорость движения воздуха над поверхностью воды (Vв.п.), а также состояние водного зеркала при различной активности купающихся — (А).
Нормируемая подвижность воздуха в зоне нахождения людей и над поверхностью воды составляет 0,15–0,2 м/с.
 
 
Рис. 5
 
По активности использования бассейнов их можно разделить на: лечебные бассейны (теплые ванны) с неподвижной открытой водной поверхностью, небольшие частные бассейны с ограниченным временем использования, общественные бассейны (в том числе отелей) для отдыха с нормальной активностью купающихся, спортивные бассейны, бассейны для отдыха и развлечений и, наконец, аквапарки с несколькими видами бассейнов со значительным волнообразованием и водными горками.
Используемое в отечественной практике проектирования выражение для опре деления количества влаги, испаряющееся с открытой не кипящей водной поверхности (формула 2.59 "Справочник проектировщика часть11. Вентиляция и кондиционирование воздуха"), не учитывает условий испарения при активной барбатации воды в бассейнах с различной активностью купающихся, при образовании искусственных волн и так далее.
 
 
Рис. 6
 
Эмпирические зависимости, рекомендуемые финскими (8) и немецкими специалистами (9,10) наиболее полно учитывают изменения условий испарения влаги в закрытых бассейнах с различной активностью купающихся:
Wотк=А•δ•(dм-d1)/1000•Fотк (8)
Wотк = е•(Рw-Р1)/1000•Fотк (9)
Wотк={0,118+[0,01995•А•(Рw-Р1)/1,333]}•Fотк (10)
где Wотк — количество влаги, испаряющейся с открытой водной поверхности плавательного бассейна, кг/час, F — площадь открытой водной поверхности, м2, δ= (25 + 19 • Vп.в) — коэффициент испарения, кг/м2•ч•кг влаги, Vп.в — скорость воздуха над поверхностью воды, dw, dl — соответственно, влагосодержание насыщенного воздуха и воздуха при заданной температуре и влажности (г/кг сухого воздуха), Pw, Pl — давление водяных паров насыщенного воздуха при температуре воды в бассейне и при заданных температуре и влажности воздуха, e — эмпирический коэф. равный: 0,5 — для закрытых поверхностей бассейна, 5 — для неподвижных открытых поверхностей бассейна, 15 — небольших частных бассейнов с ограниченным временем использования, 20 — для общественных бассейнов с нормальной активностью купающихся, 28 — для больших бассейнов для отдыха и развлечений, 35 — для аквапарков и значительным волнообразованием; А — коэффициент занятости бассейна людьми:1,5 — для игровых бассейнов с активным волнообразованием, 0,5 — для больших общественных бассейнов, 0,4 — для бассейнов отелей, 0,3 — для небольших частных бассейнов.
Сравнительные расчеты, проведенные по вышеуказанным формулам, показывают на значительное расхождение в количестве испаряющейся влаги при одних и тех же условиях. Так, при температуре воды 26°С, температуре воздуха 28°С, относительной влажности 60% и подвижности воздуха 0,2 м/с; для плавательного бассейна с нормальной активностью купающихся и площадью бассейна 354 м2, количество испаряющейся влаги составит соответственно: 107(8), 72.5(9), 68.3(10) кг/ч. Как показывает практика, результаты полученные для указанных условий по формуле (9) и (10) — более точные. Количество влаги, рассчитанное по финской методике (8) сильно завышено для такого типа бассейнов и более подходит для условий игровых бассейнов.
Наиболее универсальной является формула (9), в которой эмпирический коэффициент "е" дает возможность учесть и наиболее высокую интенсивность испарения в бассейнах с активными играми, горками и значительным волнообразованием, а также и в малых индивидуальных плавательных бассейнах. Использование нами этой методики при разработке и реализации технических решений систем вентиляции ряда объектов дало высокие результаты. Практически во всех случаях объем воздуха, рассчитанный по этому выражению, обеспечивал требуемый температурно-влажностный режим помещении бассейнов в течение всех периодов года.
Для подсчета количества влаги, испаряющейся со смоченных поверхностей пола справедливо выражение:
Wсм = 0,006•(tв-tм)•Fсм (11)
Поверхность испарения Fсм определяется в процентном отношении к открытой водной поверхности и принимается равной 20–40% открытой водной поверхности. Причем, чем больше площадь водного зеркала бассейна, тем меньше процент.
Теплопоступления и влагопоступления от купающихся могут быть подсчитаны по формулам:
Qл = n•qл, (12), Wл = n•wл (13),
где qл — количество теплоты (Вт) и wл — количество влаги (г/час) принимаются при условиях легкой физической работы для нормируемых температурно-влажностных параметров в помещениях бассейнов равными: qл — 132 Вт/час, wл — 225 г/час.
Тепловыделения от приборов освещения определятся из выражения:
Qосв = n•Noсв (14)
где Nocв — установочная мощность приборов освещения (Вт), n — коэффициент перехода электрической энергии в тепловую принимается для ламп накаливания — 0,92; для люминисцентных ламп- 0,55; для подвесных вентилируемых потолков — 0,65; для подвесных вентилируемых потолков и вытяжкой через плафоны — 0,5.
В помещениях ванн бассейнов, как правило, проектируется система вентиляции, совмещенная с отоплением. Поэтому при таких схемах составляющая Qот в балансовом уравнении, рассчитываемая из условия компенсации теплопотерь через ограждающие конструкции, не учитывается. Исключение составляют дополнительно предусматриваемые источники теплопоступлений как например обогреваемые полы, витражи, дежурное отопление и другое.
Теплопоступления и влагопоступления с приточным воздухом (Qпр) и (Wпр) определяется из выражений:
Qпр = Gпр•Iпр (15), Wпр = Gпр•dпр (16)
Количество удаляемой теплоты (Qуд) и влаги (Wуд) вентиляционным (вытяжным) воздухом определяется из выражения:
Qуд = Gуд•Iуд (17); Wуд = Gуд•dуд (18)
где Gпр, Gуд — соответственно количество приточного и удаляемого воздуха приточно-вытяжной вентиляцией, кг/час; Iпр, Iуд — теплосодержание приточного и удаляемого воздуха кдж (ккал.) на кг. воздуха; dпр, dуд — влагосодержание приточного и удаляемого воздуха г/кг сухого воздуха.
Перечисленные параметры являются определяющими при расчете производительности вентиляционного оборудования по воздуху, теплу и холоду, а также при выборе принципиально-технологической схемы автоматического регулирования.
Одним из основных параметров СОМ является минимально требуемое количество наружного воздуха (Gпр), которое определяется из условия удаления избытков влаги, то есть:
Gпр = W/(dв - dн) (19)
Величина влагосодержания внутреннего воздуха (dв) определяется по "I-d" диаграмме влажного воздуха в соответствии с нормируемыми значениями температуры (tв) и влажности (fв). Величина влагосодержания наружного воздуха (dн) определяется по "I-d" диаграмме влажного воздуха в соответствии с расчетными значениями (параметры "Б" для холодного и теплого периодов года — СНиП 2.04.05.91) температуры (tн) и теплосодержания (Iн).
Рассчитанная по влаге величина воздухообмена не должна быть ниже нормируемых минимальных значений по объему помещения закрытого бассейна, которая в соответствии со СНиП 2.08.02.89 принимается равной 3–5 кратному объему в час. Причем, большая величина относится к объему вытяжной системы вентиляции.
Вторым определяющим параметром СОМ является ее теплопроизводительность (Qв) кВт, то есть, количество теплоты, которое необходимо затратить на нагрев количества наружного воздуха (Gпр) до температуры приточного воздуха (tпр):
Qв = 0,278•Gпр(tпр-tн) (20),
где — (tпр) определяется по "I-D" диаграмме влажного воздуха как точка пересечения линии постоянного влагосодержания наружного воздуха (dн) с лучом процесса :
(Е=Qоб/W) (21),
где — Qоб — избытки общего тепла в помещении в соответствии с балансовым уравнением без учета количества теплоты, поступающей с приточным воздухом (Qпр).
Здесь необходимо отметить основную особенность при выборе принципиальной технологической схемы приточно-вытяжной вентиляции бассейнов. Дело в том, что воздухообмен для различных периодов года подвержен значительному изменению из-за резкого увеличения градиента перепада влагосодержания внутреннего и наружного воздуха в холодный период года в сравнении с теплым периодом. С учетом указанной особенности, максимальное(определяющее выбор вентиляционной установки по воздухопроизводительности) количество приточного воздуха требуется в теплый период года. Естественно, подавать такое количество наружного воздуха в холодный период года нерационально, так как это приводит к значительному перерасходу тепла на его нагрев и к резкому снижению влажности внутреннего воздуха.
Для обеспечения в холодный период нормируемых условий микроклимата в бассейне и экономии топливно-энергетических ресурсов вентиляционные установки проектируются с переменной рециркуляцией. При этом количество наружного воздуха подается из расчета минимально требуемого в холодный период из условия удаления избытка влаги.
В малых бассейнах с незначительной мощностью вентиляционного оборудования рациональнее применять вентиляционные установки с плавным или ступенчатым регулированием воздухопроизводительности в холодный и теплый периоды года.
Снижения воздухопроизводительности вентиляционных установок можно также достичь, применяя осушители воздуха и устанавливая их по периметру ограждающих конструкций. При этом осушители воздуха рекомендуется применять в малых и средних по объему бассейнах при дефиците энергообеспечения для систем вентиляции.
В теплый период года необходимо проводить проверку воздухообмена, рассчитанного по влаге, на теплоизбытки и при технико- экономической целесообразности снижать воздухообмен за счет применения установок охлаждения воздуха.
В холодный период года с целью экономии тепла на подогрев вентиляционного воздуха, могут применятся установки, утилизирующие теплоту выбросного воздуха. Для помещений бассейнов рекомендуется применять рекуперативные теплоутилизаторы непосредственного действия и с промежуточным теплоносителем.
Нагрев приточного наружного воздуха в теплоутилизационной установке может быть определен по следующему уравнению теплового баланса:
Qт.у.=Lн.р•0,278(tн.у.-tн.х.)=Lу.х.•ρ(Iу1-Iу2) (22)
где Lн.p., Lу.х. — соответственно количество наружного приточного воздуха, поступающего через теплый контур и количество удаляемого воздуха через холодный контур теплоутилизационной установки;
tн.х, tн.у. — соответственно температура наружного воздуха до и после теплого контура теплоутилизатора;
Iу1, Iу2 — соответственно теплосодержание (кдж/кг) удаляемого воздуха до и после холодного контура теплоутилизатора.
При этом, выбор типа и конструктивно-технологичес кой схемы теплоутилизационной установки зависит от задаваемых проектировщиком рациональных значений tн.у. и Iу2 и коэффициента эффективности теплообмена Еут.
При проектировании системы вентиляции очень важно учитывать особенности распределения приточного и вытяжного воздуха, обеспечивая комфортную подвижность в зоне обитания людей. Учитывая, что приточный воздух имеет высокую температуру tпр ≥28°С, низкую относительную влажность (15–20%) и высокую скорость, его целесообразно подавать вдоль стен и окон по периметру помещения (особенно это относится к бассейнам с малыми объемами). Такое распределение воздуха позволяет увеличивать "поглотительную способность" приточного воздуха обеспечивая поддержание температуры у поверхности ограждающих конструкций выше температуры точки росы окружающего воздуха. При этом удаление влажного воздуха производится из верхней зоны помещения. Это связано с тем, что влажный воздух легче сухого и под перекрытием влагосодержание воздуха значительно выше, чем в зоне пребывания людей.
При наличии значительной поверхности верхнего света (перекрытие из стеклопакетов) часть приточного воздуха подается в верхнюю зону настилающими струями с высокой скоростью со стороны одной из продольных стен, а удаление производится со стороны другой продольной стены. При такой схеме достигается повышение температуры поверхности остекления (при более высокой температуре подаваемого воздуха в верхнюю зону) в холодный период и снятие перегрева (при охлаждении приточного воздуха) в жаркий период года.
При проектировании СОМ бассейнов необходимо предусматривать устройства для снижения уровня аэродинамического и механического шумов от работающего вентиляционного оборудования. Как правило, шумоглушители (пластинчатые или трубчатые в зависимости от конфигурации воздуховодов) устанавливаются на обеих сторонах вентилятора. Расчет площади поперечного сечения глушителя (Sш) ведется из условия допустимой по шумообразованию скорости воздуха в живом сечении глушителя, которая принимается в пределах 4–5м/сек.
Sш = Lв/Vдоп (23)
Снижение аэродинамического шума, распространяемого по воздуховодам, достигается уменьшением скорости воздуха за счет увеличения сечения воздуховодов. Снизить уровень шума на конечных участках можно также с помощью соединения металлических воздуховодов и воздухораспределительных устройств гибкими шумопоглощающими воздуховодами типа "Sonodec".
Приточная вентиляционная установка при проектировании должна комплектоваться набором фильтров грубой (ЕU3) и тонкой (ЕU5) очистки приточного воздуха. Фильтровальными материалами для фильтров грубой очистки могут быть металлизированные или синтетические сетки в виде панелей. В фильтрах тонкой очистки применяется стеклоткань со специальной пропиткой. В основном здесь применяются карманные ячейковые фильтры, либо фильтры со сменными пластинами.
По результатам расчетов тепло-влажностного баланса помещения бассейна, а также анализа круглогодичных режимов работы вентиляционного оборудования, соответствующих техническому заданию, проводится, собственно, проектирование СОМ, то есть, разрабатывается принципиально-технологическая схема обработки, подачи и удаления приточно-вытяжного воздуха, выбор оборудования и привязка его к объемно-планировочным решениям здания.
Полная принципиально-технологическая схема СОМ, представленная на рис. 2, включает в себя приточный и вытяжной контуры, взаимоувязанные между собой по воздуху.
Приточный контур СОМ собирается из функциональных блоков кондиционеров, включающих по ходу воздуха: воздушный клапан с электроприводом для регулирования поступления наружного воздуха, воздушные фильтры грубой и тонкой очистки, гликолевый рекуперативный теплообменник, где наружный воздух от расчетных параметров зимнего периода догревается до выбранной оптимальной температуры, за счет теплоты удаляемого воздуха, теплообменник 1-го подогрева, в котором приточный воздух догревается до +10–15°С за счет использования теплоносителя повышенных параметров (перегретая вода системы теплоснабжения), камера смешивания удаляемого и приточного воздуха (рециркуляция), где приточный воздух за счет смешивания с удаляемым воздухом догревается и увлажняется в холодный период года, секция 11-го подогрева, в которой приточный воздух догревается до расчетной приточной температуры и, как правило, на этом теплообменнике устанавливается узел регулирования температуры приточного воздуха, вентиляторная секция и секция глушения шума.
Для снятия перегрева помещения бассейна в теплый период года при наличии больших площадей остекленных поверхностей в функциональной схеме предусматривается установка охлаждения приточного воздуха, включающая теплообменник-охладитель с холодильной машиной (либо прямого испарения, либо с промежуточным теплоносителем).
После глушителя воздух по воздуховодам подается в бассейновую зону. При этом организация воздухообмена в помещении бассейна принимается с учетом объемно-планировочных и конструктивных решений здания. Приточный воздух может подаваться в несколько зон, причем в некоторых случаях (наличие витражей, фонарей, верхнего остекления и так далее) температура приточного воздуха может быть выше нормируемой температуры внутреннего воздуха, что связано с необходимостью компенсации теплопотерь, повышением температуры внутренней поверхности ограждения и предупреждением выпадения конденсата.
Вытяжной влажный воздух удаляется из верхней зоны (под перекрытием) и по воздуховодам поступает в вытяжной агрегат, включающий: воздушный двухступенчатый фильтр, вытяжной вентилятор, секцию смешивания (рециркуляция) рекуперативный гликолевый теплообменник, в котором из удаляемого воздуха в холодный период отбирается тепло, понижая температуру выбрасываемого воздуха до рациональных заданных значений, и наружный воздушный клапан с электроприводом. При необходимости до и после вентилятора устанавливаются глушители шума.
В целях соблюдения правил пожарной безопасности на нагнетательной стороне приточного вентилятора и всасывающей стороне вытяжного вентилятора при проходах воздуховодов через ограждающие конструкции устанавливают огнезадерживающие клапана.
В качестве воздухораспределителей применяются различные регулируемые устройства, позволяющие равномерно раздать и удалить воздух, обеспечивая в зоне нахождения людей нормируемые параметры по температуре и скорости движения воздуха.
Представленная классическая принципиально-технологическая схема СОМ закрытых помещений плавательных бассейнов может быть в каждом отдельном случае скорре ктирована в зависимости от объёмно-планировочных решений здания, района застройки, назначения бассейна и в соответствии с техническим заданием на проектирование.
 
 
Автор: Антонов П.П., к.т.н., специалист компании ООО "СИТЭС-КОНДИЦИОНЕР"
 
Статья взята с сайта Мир климата.